

Stress Analysis of Dendritic Microstructure During Solidification

Lance C. Hibbeler (Ph.D. Student)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Introduction

- Hot tearing is a solidification defect that leads to poor product quality at best and a breakout at worst
- The averaging inherent to traditional macro-scale models prevents study of the details of hot tear formation and propagation
- This work explores the hot tearing phenomenon by combining macro-scale information with a detailed model of the morphology of the solidification front

Detailed simulation of a surface defect 0 02021

$$\varepsilon_{c} = \frac{0.02821}{\dot{\varepsilon}^{0.3131} \cdot \Delta T_{B}^{0.8638}}$$

Won *et al.*, *MMTB* 2000

tinuous Casting

Insortium

$$\Delta T_B = T(f_s = 99\%) - T(f_s = 90\%)$$

$$\mathcal{E}_{dmg} = \mathcal{E}(f_s = 99\%) - \mathcal{E}(f_s = 90\%)$$

$$D = \varepsilon_{dmg} / \varepsilon_{dmg}$$

Previous Work Small Scales

Semi- or Analytical models

- Rappaz, Drezet, and Gremaud, MMTA 1999
- Monroe and Beckerman, MSEA 2005

Mushy zone RVE models

- Vernede, Dantzig, and Rappaz, Acta Mat. 2009
- Phillion, Cockcroft, and Lee, MSMSE 2009
- Sistaninia, Phillion, Drezet, and Rappaz, Acta Mat. 2012

Metals Processing Simulation Lab

Lance C. Hibbeler • 5

Previous Work *Room for Improvement*

- Previous work covers mostly:
 - Aluminum alloys
 - Equiaxed/globular grains
 - Mushy zone frozen in time
 - Macro- or meso-scale need liquid+solid averaging
 - Oversimplified material models solid, liquid or both
- Present work is concerned with:
 - Commercial steel alloys
 - Entire solidification history surface and columnar zones
 - Microscale no averaging
 - Proper material models
 - Relate microscale information to macroscale quantities

Lance C. Hibbeler

 Different break-out risk is observed during production, which is believed to be due to hot cracking in the first solid shell

inside the caster:

2 > 1) >> 3

Table 1: Typical chemical composition of three steel grades							
Steel	, C	, Mn	, V	, Nb	N (ppm)		
grade	(wt %)	(wt %)	(wt %)	(wt %)	aim	max	
1 LCAK	0.045	0.22	-	-	-	50	
2 LR-HSLA	0.045	0.8	0.04	0.013	80	100	
③ HSLA	0.045	0.8	0.13	0.013	130	150	

B. Boettger et al., MCWASP XIII

Calibrated Heat Flux Profile

Explicit	FEM
-----------------	-----

 $\nabla \cdot \boldsymbol{\sigma} \perp \boldsymbol{h} = \boldsymbol{\alpha} \boldsymbol{\sigma}$

Get accelerations from force balance

Integrate to get half-step velocity

Integrate at half-step to get displacement

Critical time step

Dilational wave speed (approx. 1000 m/s)

$$\nabla \cdot \boldsymbol{\sigma} + \boldsymbol{b} = \rho \boldsymbol{a} \qquad \Rightarrow \boldsymbol{a}^n = \boldsymbol{M}^{-1} (\boldsymbol{F}_{ext}^n - \boldsymbol{F}_{int}^n)$$

$$v^{n+\frac{1}{2}} = v^{n-\frac{1}{2}} + a^n \frac{\Delta t^{n+1} + \Delta t^n}{2}$$

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^n + \boldsymbol{v}^{n+\frac{1}{2}} \Delta t^{n+1}$$

 $\Delta t < \frac{L_{min}}{c_d}$ L_{min} Smallest element characteristic length $\hat{\mu}$ Effective shear modulus

$c_d = \left| \frac{\hat{\lambda} + 2\hat{\mu}}{\rho} \right|$ $\hat{\lambda}$ Effective Lame constant

Efficiencies from:

- No Newton iterations (no matrix solve)
- Lumped mass matrix (no matrix solve)
- Mass scaling make density large to increase critical step size •

asting Consortium

Lance C. Hibbeler

12

- Using the "traditional" quasi-static approach, the 2D simulation with previously-described conditions always crashes with the formation of solid material
- An alternative approach, which explicitly integrates the full force balance, is more numerically stable
 - Mass scaling technique increases critical time step size
 - Explicit marching scales well across processors
 - No generalized plane strain elements; must work in 3D
 - See (Koric, Hibbeler, and Thomas, IJNME 2009) for more detail

nuous

Material Models

- Liquid:
 - Elastic, perfectly plastic (500 Pa yield stress)
 - To be improved to Newtonian fluid (viscosity increases critical Δt)
- Solid: Zhu (ferrite) or Kozlowski III (austenite)

Macroscale Model

Macroscale Model – Results

Macroscale Strain History

- Peak negative pressure in roots of secondary arms
 - Insufficient feeding can lead to porosity

Pressure stress

Negative pressure means material in tension University of Illinois at Urbana-Champaign

S, Fles	sure
(Avg: 7	5%)
+4	1.560e+00
- +4	1.134e+00
+ +3	3.707e+00
+ +3	3.280e+00
+ +2	2.854e+00
+ +2	2.427e+00
+ +2	2.001e+00
+ + 2	1.574e+00
- + ÷	1.148e+00
+ +2	7.210e-01
+ +2	944e-01
1	322e-01
Ś	5880-01

Metals Processing Simulation Lab

Lance C. Hibbeler - 20

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Lance C. Hibbeler

Conclusions

- Modeling effort underway to predict hot tearing from small-scale phenomena
 Preliminary efforts look promising
- Future studies based on very large phase field simulations

University of Illinois at Urbana-Champaign

Acknowledgements

 Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Tata Steel, Goodrich, Magnesita Refractories, Nucor Steel, Nippon Steel, Postech/Posco, SSAB, ANSYS-Fluent)

Metals Processing Simulation Lab

- Dr. Bernd Boettger, ACCESS e.V. – See (Boettger, Apel, Santillana, and Eskin, MCWASP XIII) for more detail
- National Center for Supercomputing Applications (NCSA) at UIUC – "Forge" cluster
- Dassault Systemes (ABAQUS parent company)

25

Lance C. Hibbeler